E. M. Postma, J. M.H. Noothout, W. M. Boek, A. Joshi, T. Herrmann, T. Hummel, P. A. M. Smeets, I. Išgum, S. Boesveldt, "The potential for clinical application of automatic quantification of olfactory bulb volume in MRI scans using convolutional neural networks", NeuroImage: Clinical, 2023.
S.G.M. van Velzen, B.D. de Vos, J.M.H. Noothout, H.M. Verkooijen, M.A. Viergever, I. Išgum, "Generative models for reproducible coronary calcium scoring", Journal of Medical Imaging, 2022; 9 (5): 052406.
J.M.H. Noothout, N. Lessmann, M.C. van Eede, L.D. van Harten, E. Sogancioglu, F.G. Heslinga, M. Veta, B. van Ginneken, I. Išgum, "Knowledge distillation with ensembles of convolutional neural networks for medical image segmentation", Journal of Medical Imaging, 2022; 9 (5): 1-20.
J. M. H. Noothout, B. D. de Vos, J. M. Wolterink, E. M. Postma, P. A. M. Smeets, R. A. P. Takx, T. Leiner, M. A. Viergever and I. Išgum, "Deep learning-based regression and classification for automatic landmark localization in medical images", IEEE Transactions on Medical Imaging, 2020; 39 (12): 4011-4022.
Z. Zhai, Y. Wang, B. D. de Vos, J. M.H. Noothout, N. Planken and I. Išgum, "Generative adversarial network for coronary artery plaque synthesis in coronary CT angiography", SPIE Medical Imaging, Image Processing, 2022.
J. M. H. Noothout, E. M. Postma, S. Boesveldt, B. D. de Vos, P. A. M. Smeets and I. Išgum, "Automatic segmentation of the olfactory bulbs in MRI", SPIE Medical Imaging, Image Processing, 2021; 11596: 115961J.
L. D. van Harten, J. M. H. Noothout, J. J. C. Verhoeff, J. M. Wolterink and I. Išgum, "Automatic segmentation of organs at risk in thoracic CT scans by combining 2D and 3D convolutional neural networks", Proc. of SegTHOR challenge at IEEE International Symposium on Biomedical Imaging, 2019.J. M. H. Noothout, B. D. de Vos, J. M. Wolterink, T. Leiner and I. Išgum, "CNN-based landmark detection in cardiac CTA scans", Medical Imaging with Deep Learning (MIDL 2018), 2018.
J. M. H. Noothout, B. D. de Vos, J. M. Wolterink and I. Išgum, "Automatic segmentation of thoracic aorta segments in low-dose chest CT", SPIE Medical Imaging, Image Processing, 2018; 10574: 105741S.
abstracts
2TOTAL RESOURCES
E.M. Postma, J.M.H. Noothout, W.M. Boek, T. Hummel, P.A.M. Smeets, I. Išgum, S. Boesveldt, "Applying olfactory bulb volume in the clinic: relating clinical outcome measures to olfactory bulb volume using convolutional neural networks", Association for Chemoreception Sciences, 2021.
J. M. H. Noothout, B. D. de Vos, J. M. Wolterink, R. A. P. Takx, T. Leiner and I. Išgum, "Deep learning for automatic landmark localization in CTA for transcatheter aortic valve implantation", Radiological Society of North America, 105th Annual Meeting, 2019.