N. Hampe, S. G. M. van Velzen, J. M. Wolterink, C. Collet, J. P. S. Henriques, N. Planken, I. Išgum, "Graph neural networks for automatic extraction and labeling of the coronary artery tree in CT angiography", Journal of Medical Imaging, 2024; 11 (3): 034001.
M. M. Dobrolinska, R. A. Jukema, S. G. M. van Velzen, P. A. van Diemen, M. J. W. Greuter, N. H. J. Prakken, N. R. van der Werf, P. G. Raijmakers, R. H. J. A. Slart, P. Knaapen, I. Isgum, I. Danad, "The prognostic value of visual and automatic coronary calcium scoring from low-dose computed tomography-[¹⁵O]-water positron emission tomography", European Heart Journal - Cardiovascular Imaging, 2024.
Y.Koop, F. Atsma, M. C.T. Batenburg, H. Meijer, F. van der Leij, R. Gal, S. G.M. van Velzen, I. Išgum, H. Vermeulen, A. H.E.M. Maas, S. El Messaoudi & H. M. Verkooijen , "Competing risk analysis of cardiovascular disease risk in breast cancer patients receiving a radiation boost", Cardio-Oncology, 2024; 10 (1): 7.
N. Hampe, S.G.M. van Velzen, R.N. Planken, J.P. Henriques, C. Collet, J. Aben, M. Voskuil, T. Leiner and I. Isgum, "Deep Learning-based Detection of Functionally Significant Stenosis in Coronary CT Angiography", Frontiers in Cardiovascular Medicine, 2022; 15 (9): 964355.
Z. Zhai, S.G.M. van Velzen, N. Lessmann, N. Planken, T. Leiner and I. Isgum, "Learning coronary artery calcium scoring in coronary CTA from non-contrast CT using unsupervised domain adaptation", Frontiers in Cardiovascular Medicine, 2022; 9: 981901.
S.G.M. van Velzen, M.M. Dobrolinska, P. Knaapen, R.L.M. van Herten, R. Jukema, I. Danad, R.H.J.A. Slart, M.J.W. Greuter and I. Isgum, "Automated cardiovascular risk categorization through AI-driven coronary calcium quantification in cardiac PET acquired attenuation correction CT", Journal of Nuclear Cardiology, 2022.
S.G.M. van Velzen, B.D. de Vos, J.M.H. Noothout, H.M. Verkooijen, M.A. Viergever, I. Išgum, "Generative models for reproducible coronary calcium scoring", Journal of Medical Imaging, 2022; 9 (5): 052406.
S.G.M. van Velzen, R. Gal, A.J. Teske, F. van der Leij, D.H.J.G. van den Bongard, M.A. Viergever, H.M. Verkooijen, I. Isgum, "AI-based radiation dose quantification for estimation of heart disease risk in breast cancer survivors after radiation therapy", International Journal of Radiation Oncology, 2022; 112 (3): 621-632.
S.G.M. van Velzen, S. Bruns, J.M. Wolterink, T. Leiner, M.A. Viergever, H.M. Verkooijen, I. Išgum, "AI-based quantification of planned radiation therapy dose to cardiac structures and coronary arteries in patients with breast cancer", International Journal of Radiation Oncology, Biology, Physics, 2022; 112 (3): 611-620.
R. Gal, M.L. Gregorowitsch, M.J. Emaus, E.L.A. Blezer, F. van der Leij, S.G.M. van Velzen, J.J. van Tol-Geerdink, I. Isgum, H.M. Verkooijen, "Coronary artery calcifications on breast cancer radiotherapy planning CT scans and cardiovascular risk: What do patients want to know?", International Journal of Cardiology Cardiovascular Risk and Prevention, 2021; 11 : 200113.
R. Gal, S.G.M. van Velzen, M.J. Hooning, M.J. Emaus, F. van der Leij, M.L. Gregorowitsch, E.L.A. Blezer, S.A.M. Gernaat, N. Lessmann, M.G.A. Sattler, T. Leiner, P.A. de Jong, A.J. Teske, J. Verloop, J.J. Penninkhof, I. Vaartjes, H. Meijer, J.J. van Tol-Geerdink, J. Pignol, D.H.J.G. van den Bongard, I. Išgum, H.M. Verkooijen, "Identification of risk of cardiovascular disease by automatic quantification of coronary artery calcifications on radiotherapy planning CT scans in patients with breast cancer", JAMA Oncology, 2021; 7 (7): 1024-1032.
S. G. M. van Velzen, N. Lessmann, B. K. Velthuis, I. E. M. Bank, D. H. J. G. van den Bongard, T. Leiner, P. A. de Jong, W. B. Veldhuis, A. Correa, J. G. Terry, J. J. Carr, M. A. Viergever, H. M. Verkooijen and I. Išgum, "Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocols", Radiology, 2020; 295 (1).
N. Hampe, J. M. Wolterink, S. G. M. van Velzen, T. Leiner and I. Išgum, "Machine learning for assessment of coronary artery disease in cardiac CT: a survey", Frontiers in Cardiovascular Medicine, 2019; 6 (172).
M. J. Emaus, I. Išgum, S. G. M. van Velzen, H. J. G. D. van den Bongard, S. A. M. Gernaat, N. Lessmann, M. G. A. Sattler, A. J. Teske, J. Penninkhof, H. Meijer, J. P. Pignol and H. M. V. B. study group, "Bragatston study protocol: a multicentre cohort study on automated quantification of cardiovascular calcifications on radiotherapy planning CT scans for cardiovascular risk prediction in patients with breast cancer", BMJ Open, 2019; 9 (7): e028752.
S. A. M. Gernaat, S. G. M. van Velzen, V. Koh, M. J. Emaus, I. Išgum, N. Lessmann, S. Moes, A. Jacobson, P. W. Tan, D. E. Grobbee, D. H. J. van den Bongard, J. I. Tang and H. M. Verkooijen, "Automatic quantification of calcifications in the coronary arteries and thoracic aorta on radiotherapy planning CT scans of Western and Asian breast cancer patients", Radiotherapy and Oncology, 2018; 127 (3): 487-492.
N. Hampe, S. G. M. Van Velzen, J. P. Aben, R. L. M. van Herten, C. Collet, I. Išgum, "Deep learning-based prediction of fractional flow reserve after invasive coronary artery treatment", SPIE Medical Imaging, Image Processing, 2024; 12926: 100-107.S. G. M. van Velzen, B. D. de Vos, H. M. Verkooijen, T. Leiner, M. A. Viergever and I. Išgum, "Coronary artery calcium scoring: can we do better?", SPIE Medical Imaging, Image Processing, 2020; 11313: 113130G.
S. G. M. van Velzen, M. Zreik, N. Lessmann, M. A. Viergever, P. A. de Jong, H. M. Verkooijen and I. Išgum, "Direct prediction of cardiovascular mortality from low-dose chest CT using deep learning", SPIE Medical Imaging, Image Processing, 2019; 10949: 109490X.
R. Gal, S. G. van Velzen, M. J. Emaus, D. H. van den Bongard, M. L. Gregorowitsch, E. L. Blezer, G. Sofie, N. Lessmann, M. G. Sattler, M. J. Hooning, A. J. Teske, J. J. Penninkhof, H. Meijer, J. P. Pignol, J. Verloop, I. Išgum, H. M. Verkooijen and B. S. Group, "The risk of cardiovascular disease in irradiated breast cancer patients: The role of cardiac calcifications and adjuvant treatment", European Journal of Cancer, 2020.S. G. M. van Velzen, J. G. Terry, B. D. de Vos, N. Lessmann, S. Nair, A. Correa, H. M. V. J. Carr and I. Išgum, "Automatic prediction of coronary heart disease events using coronary and thoracic aorta calcium among African Americans in the Jackson Heart study", Radiological Society of North America, 105th Annual Meeting, 2019.S. G. M. van Velzen, N. Lessmann, M. J. Emaus, H. van den Bongard, H. M. Verkooijen and I. Išgum, "Deep learning for calcium scoring in radiotherapy treatment planning CT scans in breast cancer patients", Radiological Society of North America, 105th Annual Meeting, 2019.
phd theses
1TOTAL RESOURCES
S.G.M. van Velzen, "AI-based Analysis of Cardiovascular Disease Risk in CT of Breast Cancer Patients", Utrecht University, The Netherlands, 2021, ISBN: 978-94-6419-173-8.
preprint
1TOTAL RESOURCES
N. Hampe, S. G. M. van Velzen, J. P. Aben, C. Collet, I. Išgum, "Deep Learning-Based Prediction of Fractional Flow Reserve along the Coronary Artery", arXiv:2308.04923, 2023.
S.G.M van Velzen, N. Hampe, B.D. de Vos, I. Isgum, "Artificial intelligence-based evaluation of coronary calcium", pp. 245-257, In: De Cecco, C.N., van Assen, M., Leiner, T. (eds) Artificial intelligence in cardiothoracic imaging. Humana, Cham, 2022, ISBN: 978-3-030-92087-6.