This project aims to develop deep learning-based computer-assisted tools to improve perinatal care. Specifically, two different branches are investigated:
a) fetal ultrasound – the goal is to develop a method for fetal ultrasound video analysis that is able to automatic fetal biometry measurements and estimates the fetal birth weight at various gestational ages using multimodal data.
b) fetoscopic laser surgery – the goal is to develop a real-time method that is able to segment and visualize placental vessels during fetoscopic laser photocoagulation for Twin-to-Twin Transfusion Syndrome (TTTS).
Journal articlesS. Płotka, T. Szczepański, P. Szenejko, P. Korzeniowski, J. Rodriguez Calvo, Asma Khalil, A. Shamshirsaz, R. Brawura-Biskupski-Samaha, I. Išgum, C. I. Sánchez, A. Sitek , "Real-time placental vessel segmentation in fetoscopic laser surgery for Twin-to-Twin Transfusion Syndrome", Medical Image Analysis, 2025; 99.
PHD thesesS. S. Płotka, "Enhancing prenatal care through deep learning", University of Amsterdam, The Netherlands, 2024, ISBN: 978-94-93330-94-8.
S. S. Płotka, M. K. Grzeszczyk, P. I. Szenejko, K. Żebrowska, N. A Szymecka-Samaha, T. Łęgowik, M. A Lipa, K. Kosińska-Kaczyńska, R. Brawura-Biskupski-Samaha, I. Išgum, C. I. Sánchez, A. Sitek, "Deep learning for estimation of fetal weight throughout the pregnancy from fetal abdominal ultrasound", American journal of obstetrics & gynecology MFM, 2023; 5 (12): 101182.
S. Płotka, M. K. Grzeszczyk, R. Brawura-Biskupski-Samaha, P. Gutaj, M. Lipa, T. Trzciński, I. Išgum, C. I. Sánchez, A. Sitek, "Fetal birth weight prediction using biometry multimodal data acquired less than 24 h before delivery", Computers in Biology and Medicine, 2023 (107602).